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We study singular limit of a p-Laplacian reaction-diffusion equation with a spa-
tially inhomogeneous reaction term. The coefficient of the reaction term is much
larger than the diffusion coefficient and sharp interfaces appear between two
phases. We show by matched asymptotic expansions that the limit equation (inter-
face equation) is a mean curvature flow with drift terms, similar to the case p=2.
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1. INTRODUCTION

It is well-known that some classes of nonlinear diffusion equations give rise
to sharp internal layers (or interfaces) when the diffusion coefficient is very
small or the reaction term is very large. And the motion of such interfaces
is often driven by their mean curvature.
To name only a few, Chen(1) gave a rigorous proof on the generation

and propagation of interfaces for

ut=Du−
1
e2
WŒ(u), x ¥ RN, t > 0,

where e > 0 is a small parameter and W(u) is a double-well potential of
equal well-depth (a typical example is W(u)=u2(u2−1)). He showed that
the equation of motion of the surface (interface equation) is

V=−(N−1) o,



where V is the normal velocity of the interface and o is mean curvature of
the interface.
In ref. 2, the authors studied a reaction-diffusion equation with a

spatially inhomogeneous reaction term:

ut=Du−
1
e2
h2(x) WŒ(u), x ¥ RN, t > 0, (1.1)

with h strictly positive. They showed that the interface equation involves a
drift term despite the absence of drift in the original equation:

V=−(N−1) o−
“

“n
(log h), (1.2)

where n is the normal unit vector to the surface (outward, for closed inter-
faces). The existence of stable stationary closed interfaces for (1.2) in the
plane was obtained in ref. 3.
Recently, ref. 4 gave a rigorous proof on the generation and propaga-

tion of interfaces for

ut=div(k(x) Nu)+
h(x)
e2
u(1−u2), in W×(0, T).

For more details of the interface equations, see, for example, the above
listed papers and references therein.
In this paper, we consider a p-Laplacian reaction-diffusion equation

(Allen–Cahn equation) with a spatially inhomogeneous reaction term:

1
ep−2
ut=div(ap(x) |Nu|p−2 Nu)−

1
ep
bp(x) WŒ(u), x ¥ RN, t > 0,

(1.3)

where p > 1 is a constant, a(x), b(x) are smooth and for some a0 > 0,
a(x) \ a0(x ¥ RN), b(x) > 0(x ¥ RN). We show by matched asymptotic
expansions that the singular limit of (1.3) (that is, the interface equation)
is a mean curvature flow with drift terms concerning “a

“n and
“b
“n . Though the

drift terms may be not exact gradient times the normal, the interface equa-
tion is contained in the class of mean curvature flow with drift terms, just
as the case p=2.

2. A FORMAL DERIVATION OF INTERTFACE EQUATIONS

In this section, we present a formal derivation of the equation of
motion of interface for Eq. (1.3). The technique is based on matched
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asymptotic expansions using the so-called signed distance function, which
can be found in refs. 2 and 5, etc. We assume that f(u)=−WŒ(u) is a
smooth function derived from a double-well potential W(u) whose local
minima lie at u=−1 and u=1. Moreover we assume that f(−1)=
f(0)=f(1), fŒ(−1) < 0, fŒ(0) > 0, fŒ(1) < 0 and >1−1 f(s) ds=0. The last
condition is equivalent toW(−1)=W(1).

2.1. Matched Asymptotic Expansions

Let u e be a solution of (1.3) and C e be the interface

C e=0
t \ 0
(C et ×{t}),

where C et={x ¥ RN | u e(x, t)=0}. Hereafter, we assume that the interface
C e is smooth and that C et is a smooth closed hypersurface in RN without
boundaries for each t \ 0. We denote by W et the bounded domain in RN

enclosed by C et .
Let d e(x, t) be the signed distance function to C e defined by

d e(x, t)=˛dist(x, C
e
t ), x ¥ RN0W et ,

−dist(x, C et ), x ¥ W et .
(2.1)

We remark that d e=0 on C e and |Nd e|=1. We assume that d e has the
expansion

d e(x, t)=d0(x, t)+ed1(x, t)+e2d2(x, t)+· · ·

and denote

Ct={x ¥ RN | d0(x, t)=0}, Wt={x ¥ RN | d0(x, t) < 0}

C=0
t \ 0
(Ct×{t}), Q0=0

t \ 0
((RN0Wt)×{t}), Q1=0

t \ 0
(Wt×{t}).

Roughly speaking, Ct represents the position of the interface at time t
in the limit as eQ 0, while Wt represents the region inside Ct.
We also assume that the solution u e has the expansions

u e(x, t)=u0(x, t)+eu1(x, t)+e2u2(x, t)+· · · (2.2)

away from the interface C e (the outer expansion) and

u e(x, t)=U0(t, x, t)+eU1(t, x, t)+e2U2(t, x, t)+· · · (2.3)
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near C e (the inner expansion), where t=d e(x, t)/e. The stretched space
variable e gives exactly the right spatial scaling to describe the sharp tran-
sition between the regions {u % −1} and {u % 1}. Since u e=0 on C e, we
normalize Uk in such a way that Uk(0, x, t)=0(k=0, 1, 2,...) for all (x, t)
near C e (normalization conditions). To make the inner and outer expansions
consistent, we require that

Uk(+., x, t)=u
+
k (x, t) if x ¥ (RN0Wt ) 2 Ct (2.4)

Uk(−., x, t)=u
−
k (x, t) if x ¥ Wt 2 Ct (2.5)

for all (x, t) near C and all k \ 0 (matching conditions), where u+k and u
−
k

respectively denote the terms of outer expansion (2.2) in the region Q0 and
the region Q1. In particular, if x ¥ Ct, then one has to take into account
both of the conditions (2.4) and (2.5).

2.2. Motion of Interface for Equation (1.3)

Substituting the outer expansion (2.2) into (1.3) and collecting the e−p

and e−p+1 terms respectively, we have

bp(x) f(u0(x, t))=0, bp(x) fŒ(u0(x, t)) u1(x, t)=0.

in Q0 2 Q1. Hence we have u0=−1, u0=0 or u0=1 in Q0 2 Q1. Since we
are studying interfaces between the region {u % −1} and {u % 1}, we have
either u0(x, t)=−1 in Q0 and u0(x, t)=1 in Q1 or the other way around.
As both cases are treated similarly, we will assume the former throughout
this section. From the second equality we get u1(x, t)=0 in Q0 2 Q1.
Now, substituting (2.3) into (1.3) and collecting the e−p and e−p+1

terms, we get

ap(x) Up−20t U0tt+b
p(x) f(U0)=0, (2.6)

U0td0t=U
p−1
0t Nd0 ·Nap+(p−2) apU

p−3
0t U0tt Nd0 ·NxU0

+(p−2) apUp−30t U0ttU1t+2a
pUp−20t Nd0 ·NxU0t

+apUp−10t Dd0+a
pUp−20t U1tt+b

pfŒ(U0) U1 (2.7)

(2.7) is in fact

apUp−20t U1tt+(p−2) a
pUp−30t U0ttU1t+b

pfŒ(U0) U1

=U0td0t−U
p−1
0t Nd0 ·Nap−(p−2) apU

p−3
0t U0ttNd0 ·NxU0

−2apUp−20t Nd0 ·NxU0t−apU
p−1
0t Dd0 (2.8)
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Suppose that j(t) is the unique solution of

˛ (jŒ)
p−2jœ+f(j)=0,

j(−.)=−1, j(0)=0, j(+.)=1.
(2.9)

Hence

jŒ(t)=[p(W(j(t))−W(−1))]1/p > 0, t ¥ R.

Therefore

U0(t, x, t)=j 1
b(x)
a(x)

t2 (2.10)

for t ¥ R and all (x, t) near C, is the solution of (2.6). Substituting (2.10)
into (2.8) we have

a2bp−2(jŒ)p−2 U1tt+(p−2) abp−1(jŒ)p−3 jœU1t+bpfŒ(j) U1

=
b
a
jŒd0t−

bp−1

ap−1
(jŒ)p−1 Nd0 ·Nap−(p−2) abp−1t(jŒ)p−2 jœ Nd0 ·N 1

b
a
2

−2a2bp−2(jŒ)p−2 Nd0 ·1jŒN 1
b
a
2+b
a
tjœN 1b

a
22−abp−1(jŒ)p−1 Dd0

Let z=b
a t and taking into consideration the normalization condition we

have

bp(jŒ)p−2 U1zz+(p−2) bp(jŒ)p−3 jœU1z+bpfŒ(j) U1

=
b
a
jŒd0t−pbp−1(jŒ)p−1 Nd0 ·Na−pa2bp−2 Nd0 ·N 1

b
a
2 · z(jŒ)p−2 jœ

−2a2bp−2(jŒ)p−1 Nd0 ·N 1
b
a
2−abp−1(jŒ)p−1 Dd0

— A(z, x, t)

U1(0, x, t)=0.

(2.11)

Now we use a Fredholm type lemma like Lemma 4.1 in ref. 6 or Lemma 2.1
in ref. 2. Observing that k=jŒ solves

kp−2kœ+(p−2) kp−3(kŒ)2+fŒ(j) k=0
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and using the method of variation of constants one can find the explicit
solution of (2.11): U1(z, x, t)=a(z, x, t) k(z), where a satisfies

kp−1azz+pkp−2kŒaz=A(z, x, t)/bp,

i.e.,

(azkp)z=kA/bp. (2.12)

A solution a of (2.12) exists if and only if (see, e.g., Lemma 4.1 in ref. 6)

F
R
A(z, x, t) k(z) dz=0.

Substituting the right hand side of (2.11)a into this equality and noticing
>R z(jŒ)p−1 jœ dz = −(1/p) >R (jŒ)p (z) dz, we obtain

g2b
a
d0t=abp−1gp ·Dd0+abp−2gp Nb ·Nd0+(p−1) bp−1gp Na ·Nd0, (2.13)

where

gj=F
R
(jŒ(z)) j dz -j=1, 2,..., p.

are constants depend on j.
Since Nd0 coincides with the outward normal unit vector n to the

hypersurface Ct, and −d0t(x, t)=V, where V is the normal velocity of the
interface Ct. It is also known that the mean curvature o of the interface is
Dd0
N−1 . Thus (2.13) is equivalent to

V=−
gp
g2
5(N−1) a2bp−2o+a2bp−3 “b

“n
+(p−1) abp−2

“a
“n
6 . (2.14)
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